
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

EfficientNet with RandAuguemnt for
Diabetic Retinopathy Detection

Author:
Yurun SONG

Supervisor:
Dr. Amir Alansary

Submitted in partial fulfillment of the requirements for the MSc degree in MSc
Advanced Computing of Imperial College London

April 2020

Abstract

Image classification is an important research topic in medical area for decades. Using
the Neural Network to classify medical images becomes a convenient and fast way.
Many models are proposed for achieving high accuracy with low computational cost.
EfficientNets are a range of brand new models that have outstanding performance
on transfer learning. Moreover, EfficenNets make full use of limited resources and
provide more choices against different datasets. In this project, we will implement
EfficentNets to categorize retinal images into different levels associated with image
augment methods. Meanwhile, exploration about the dataset and evaluation on the
models are performed in the project.

Acknowledgments

I would like to give my sincere gratitude to my supervisor Dr. Amir Alansary, for
offering his guidance and support throughout this project, and for always responding
to my ideas with enthusiasm and patience.

Contents

1 Introduction 1
1.1 Objectives and Challenges . 2
1.2 Contribution . 2

2 Background 4
2.1 Models . 4

2.1.1 Residual Neural Network (ResNet) 4
2.1.2 MobileNetV1 . 4
2.1.3 MobileNetV2 . 5
2.1.4 ResNeXt . 5
2.1.5 Squeeze and Excitation layer 6
2.1.6 Neural Architecture Search Network (NasNet) 7
2.1.7 Platform-Aware Neural Architecture Search for Mobile (MNas-

Net) . 9
2.1.8 Swish . 10
2.1.9 EfficientNet . 11

2.2 Image Augment . 13
2.2.1 AutoAugment . 13
2.2.2 RandAugment . 14
2.2.3 Adversarial Propagation . 15
2.2.4 Self training with noise student 15

3 Implementation 17
3.1 Efficientnet implementation . 17
3.2 EfficientNet on Cifar10 and Cifar100 18
3.3 EfficientNets for Diabetic Retinopathy Dataset 19

4 Experimental Results 21
4.1 Cifar10 and Cifar 100 . 21
4.2 EfficientNets for Diabetic Retinopathy Dataset 22
4.3 EfficientNets for other Diabetic Retinopathy Dataset 25

5 Conclusion 27
5.1 Training configuration . 30
5.2 EfficientNet . 30

3

Chapter 1

Introduction

Neural Network for image classification has been a significant topic researched for
many years. Many works of the published research have been developed for improv-
ing the performance of the model with less resource, e.g. Residual Neural Network
(ResNet) (He et al., 2016), Mobile Network (MobileNets) (Howard et al., 2017),
Neural Architecture Search Network (NasNet) (Ramachandran et al., 2017), Mobile
Neural Architecture Search Network (MNasNet) (Zoph et al., 2018). However, these
models have a potential defect that there is no systematic method to scale up the
model for different datasets. Although model like ResNet can achieve depth scal-
ing by increasing number of layers as in ResNet-101, or width scaling by increasing
number of channels as in wide ResNet. Both approaches were manually explored
without considering the relationship of depth and width. Additionally, some other
models like NasNet, MNasNet can automatically exhaustive search the best model,
but it is costly and not scalable.
Recently, a new family of architectures known as EfficientNet (Tan and Le, 2019)
is designed for solving this problem by balancing depth, width and resolution scal-
ing within the limited resources. It achieves better performance through uniformly
scaling from a baseline to a large model. The EfficientNet family models range from
EfficientNet B0 to B8 based on the network’s size, and widely used in different kinds
of datasets, like Cifar10, Cifar100 (Cifar, 2020), and ImageNet (ImageNet, 2020).

Imbalance and noise are two common artifacts universally occur in many real-world
image datasets. One of the approaches to address the class imbalance is data aug-
mentation, which can artificially expand the size of dataset by creating modified
versions of images and potentially enhance the robustness of the model to tackle
image noises. In addition, it can perform as a regularization for complex models.
More specifically, the ratio of each classes could heavily affects the training of deep
models by introducing a bias towards the dominant class. Without manually de-
sign policies that can capture prior knowledge in each domain, RandAugment (RA)
(Cubuk, Zoph, Shlens and Le, 2019) can automatically generate variaty of images
with a little computational cost, and adjust the strength of regularization based on
the size of model or dataset. RandAugment are used uniformly across different tasks
and datasets, as well as can be combined with EfficientNet models to boost their
performance.

1

In this thesis, we evaluate EfficientNet models on healthcare data. Namely, we
choose Diabetic Retinopathy (DR) scanned images as they are very common kinds
of diabetic eye diseases. High blood sugar level leads to damage of the small vessels
in the retina. DR is the dominant reasons for blindness occurs in many developed
countries. According to the NHS 2019, 1, 280 new cases of blindness caused by DR
are reported each year in England alone, while a further 4, 200 people in the country
are thought to be at risk of retinopathy-related vision loss (Diabetes.co.uk, 2019)
Unlike many other diseases, DR may occur without any symptoms and pain in the
early stage, which makes it difficult to prevent in advance. The influence of DR on
the vision could come up when the disease starts to deteriorate. Hence, early eye
screening and diagnosis are essential measurements to prevent this to happen and
reduce the loss of vision.
However, long waiting time and difficulty scheduling appointments make the person
less likely to screen. Therefore, deep learning-based approach for detecting DR with
high sensitivity and specificity is worthy of developing to resolves the situation.

1.1 Objectives and Challenges

The final objective of this project is to efficiently implement an EfficientNet model
to classify scanned retinal images into 5-levels of severity accurately. The first step
is to construct an EfficientNet baseline model and restore the experiment in paper
(Tan and Le, 2019) on small Cifar datasets . Then, achieving the high performance
on the large Diabetic Retinopathy (DR) dataset by making use of transfer learning of
the pretrained Efficientnet B5. In order to complete this task efficiently, the AutoML
(Alansary, 2020) for DR classification and its previous best performance are used in
this project.
There are several challenges in this project. First, the proper training hyperparame-
ters for EfficientNet is much harder to find even though it performs well in different
datasets. Some common training techniques are not suitable for the EfficientNet.
Besides, the batch size and epochs of original experiment are hard to implement
due to the limitation of resources. Moreover, imbalanced classes and noises in the
DR dataset are the challenges for the training. According to descriptions of data
(Diabetic Retinopathy Detection, 2015), images may contain artifacts, be out of fo-
cus, underexposed or overexposed. Like any real-world data set, noise in both the
images and labels are exists. Developing a robust algorithm that can work in the
presence of noise and variation is a challenge for this project.

1.2 Contribution

1. Running extensive experiments for reproducing the reported EfficientNet per-
formance on Cifar data.

2. Applying EfficientNet models on DR datasets and achieving 87.08% in public

2

test and 85.81% in private test set.

3. Combining RandAugment and BalancedSampler with EfficientNet to solve the
imbalance and noise problems.

4. Performing the best model on other DR dataset.

3

Chapter 2

Background

The chapter explains in detail image classification models and image augmentation.
In the first section, we cover some of the recent models that have been used as base-
lines for evaluation. Whereas, several image augmentation and other improvement
techniques are summarised in the second part.

2.1 Models

2.1.1 Residual Neural Network (ResNet)

Blindly increasing the number of layers does not always produce an ideal perfor-
mance and gradient vanishing problem occurs along with the increment of layers.
Therefore, He et al. (2016) have proposed a special architecture based on resid-
ual blocks 2.1. These blocks allow to skip certain layers through identity shortcut
connection. The shortcut connection provides more possible paths where data can
forward and backward through the network. Hence, the network can determine to
skip over or pass through the layer. This reduces the relevant backpropagation lay-
ers flexibly, and effectively tackles the vanishing gradient problem. Residual block
promises the deeper model would not produce a training error higher than its shal-
lower NN.
Additionally, another block architecture is proposed to save the computational time,
which contains two 1x1 convolutions with a 3x3 convolution in the middle for a
single block, as shown in Fig. 2.2. The short connection is implemented in the
EfficientNet to avoid gradient vanishing.

2.1.2 MobileNetV1

MobileNet (Howard et al., 2017) is a convenient and effective architecture designed
for the mobile and embedded devices. It results in a lightweight and highly accu-
rate model that also can performs using limited resources. The core concept of the
MobileNet is called Depthwise Separable Convolution, which contains depthwise
convolution and pointwise convolution.
Depthwise convolution applies the same sized filter with only depth 1. It generates

4

Figure 2.1: A simple diagram of a residual block showing the skip connection (He
et al., 2016).

M outputs if the depth of input image is M. Pointwise convolution applies 1x1 filter
with depth M, and it generates N outputs, where N is the product of input’s width
and height. These two simple procedures sacrifice a small amount of accuracy but
significantly reduce the computational time.
It also introduces the concept of width multiplier and resolution multiplier, which
are used to uniformly thin the network layer and reduce the computational cost of
the Neural Network. The trade-off between the width and resolution multiplier is an
important part that EfficientNet explored.

2.1.3 MobileNetV2

Extended the outcomes from the MobileNetV1, the second version of MobileNet
(MoblieNetV2) (Sandler et al., 2018) proposes an architecture called inverted resid-
ual block. It combines a residual bottleneck architecture and depthwise separable
convolution. The inverted residual block applies a pointwise (1x1) convolution to
convert to high dimensional feature map space with ReLU6, then an expansion ratio
is used to generate more channels and widen the layer, see Fig. 2.2. Depthwise (3x3)
convolution with a particular stride, can be applied in the next layer and followed
by ReLU6 as well. Eventually, a pointwise layer projects back to a low dimension
with only linear activation. They present the idea that ReLU is not good at preserve
information in the high dimension. Furthermore, the residual connections should be
made between two low-dimensional feature maps.
MobileNet2 provides a good concept that the middle layer inside of bottleneck
strucutre should expand instead of squeezing, which is exactly what Mnasnet and
EfficientNet inherited.

2.1.4 ResNeXt

ResNeXt (Xie et al., 2017), an evolution architecture of the ResNet, introduces a new
dimension called cardinality (Except depth and width). It equally splits the channels
into different groups and each group is transformed by its own weight. Eventually,
the transformations in each group are aggregated by summation. As the Fig. 2.3
illustrates, ResNet and ResNeXt shares the similar residual block architecture, both

5

Figure 2.2: Block structure of MobileNet V1, V2 and ResNet.

have 1x1, 3x3 and 1x1 kernel sequentially. The difference is that ResNeXt provides
more paths and each path performs a non-linear transformation, which indirectly
aggregated to a complex transformation. The new dimension cardinality controls
more detail of channel weights and implements more complex transformations. The
paper (Xie et al., 2017) shows that the proper combination of cardinality (groups)
and width of bottleneck contributes a better performances with the similar cost in
number of parameters and floating-point operations (FLOPS).

Figure 2.3: ResNet Left and ResNeXt Right (Xie et al., 2017).

2.1.5 Squeeze and Excitation layer

An issue is proposed in the paper (Hu et al., 2018) that the weight can not assign
to the preferred channels. Each channel shares the same weight when generating

6

the output feature maps. Therefore, based on the Residual block, Squeeze and Exci-
tation (SE) Network raises an adaptive and optimal way to adjust the weighting of
each feature map by adding parameters to each channel in the convolutional block.
It consists of squeeze, Excitation and scales three stages, see Fig. 2.4.In the squeeze
stage, the global average pooling is applied to squeeze the spatial information into
channel-wise features. A fully connected layer with ReLU and a fully connected layer
with Sigmoid are used successively in the excitation stage. This nonlinear excitation
stage fully captures the association of each channel and produces the corresponding
weights. Finally, scaling back the original dimensional with additional parameters
introduced.
SE layer improves the inter-dependencies between channels without adding too
much computational cost. It is widely accepted by lots of deep Neural Network
models, especially MNasNet and EfficientNet.

Figure 2.4: Squeeze and Excitation layer on ResNet (Hu et al., 2018).

2.1.6 Neural Architecture Search Network (NasNet)

Neural Architecture Search Network (NasNet) is a systematic searching model. The
author (Zoph et al., 2018) searches convolutional cells by using reinforcement learn-
ing on the small dataset like Cifar10 and transfer the cells onto a large dataset like
ImageNet.
Each dataset has its predefined NasNet framework but they share the same cells
searched by reinforcement learning. The convolutional cell, see Fig. 2.5 has two
categories: normal cell and reduction cell. The normal cell aims to keep the same
dimension of input and output feature maps while the reduction cell generates an
output feature map, which is a half size of the input.

7

Figure 2.5: NasNet-A (4 blocks) Normal and reduction cells (2 inputs and 1 output)
(Zoph et al., 2018).

At the same time, each cell is constructed by a predefined number of blocks. For ex-
ample, NasNet A has 4 blocks each cell. A block is composed of two hidden (input)
layers, two operations like 3x3 depthwise Conv, 5x5 max pooling and a combined
method such as addition and concatenate, as the Fig. 2.6 shown. Softmax is applied
for each selection of hidden layers, operation and combined method in search space.
The resulting hidden state from a block is retained in the set of potential hidden
states to be selected in the following blocks.

Figure 2.6: Block structure of NasNet (Zoph et al., 2018).

Only normal and reduce cell are searched by the RNN controller, see Figure 2.7.
These optimal cells are used in the pre-defined network architectures and fed to

8

child networks on a small dataset with probability and update the controller using
probability and return validation accuracy.

Figure 2.7: An Overview of NasNet and RNN controller (Zoph et al., 2018).

The paper (Zoph et al., 2018) also proposes a method called ScheduledDropPath,
which performs well in regularizing NasNet. Drop path stochastically drops out each
path in the cell with probability. Moreover, drop path with linearly increasing the
probability throughout the whole training significantly improves the final perfor-
mance, which is the reason why EfficientNet linearly increases drop connect rate
every two versions.
NasNet is the basic version of MNasNet, which produce the baseline model of Effi-
cientNet and indirectly contributes to the growth of EfficientNet.

2.1.7 Platform-Aware Neural Architecture Search for Mobile (MNas-
Net)

NasNet models aim for searching a high accuracy model rather than an efficient one.
Therefore, MNasNet (Tan et al., 2019) was developed, which requires not only high
accuracy but also low latency in the mobile platform.
In the controller system, see Fig. 2.10, they add a real word mobile phone to mea-
sure the inference latency instead of FLOPS and multi-objective rewards containing
both latency and accuracy is fed back to the controller.

Considering the same cells are repeated many times in the whole NasNet archi-
tecture, MNasNet proposed factorized hierarchical search space to permit the cell
diversity, which is critical for achieving high accuracy and lower latency. Factorized
hierarchical search space consists of a group of predefined blocks, based on the in-
put resolution and filter size, see Fig. 2.9. Each block includes N number of layers,
where N is also a part of search space. A layer can be composed of more detail
search spaces like Operations, Kernel sizes, SE ratios, etc. Hence, layers from the
different blocks are not the same. This method factorizes a CNN model into unique

9

Figure 2.8: An Overview of MNasNet and its RNN controller (Tan et al., 2019).

blocks and then searches for the operations and connections per block separately.
The layer diversity achieves a good trade-off between accuracy and latency.

Figure 2.9: Factorized hierarchical search space (Tan et al., 2019).

The baseline model of EfficientNet (EfficientNet-B0) is generated by MNasNet mech-
anism as well. Beyond that, the paper (Tan et al., 2019) provides Mobile Inverted
Bottlenect Conv block (MBConv) as the core used in EfficientNet architectures, see
Fig 2.10. MBConv is a block evolved from inverted residual block in MobileNetV2, in-
volving some new techniques like SE layer. MBConv3 and MBConv6 are the searched
block from MNasNet with different expansion ratio, and work as the foundation of
EfficientNet models.

2.1.8 Swish

Many activation functions were developed to be used in deep neural networks, but
they have not shown a consistent gain with the dimension incresing. For example,
even ReLU is not good at preserve information in the high dimension (Sandler et al.,
2018). In the paper (Ramachandran et al., 2017), they discovered automatic search

10

Figure 2.10: NasNet-A and MBConv block (Tan et al., 2019).

techniques to discover new activation functions. Many unary and binary functions
as search space, they use exhaustive search and RNN controller for small and large
dataset. The core unit in the RNN controller passes two inputs into two unary func-
tions independently and use a binary function to combine and return an output.
They get the best performance for Swish, which works better than ReLU both on the
small dataset and deeper models.

f(x) = x× σ(βx) (2.1)

Swish function is defined as above, where σ is the sigmoid function and β is either a
constant or a trainable parameter.
if β = 1, swish is equivalent to the Sigmoid-weighted Linear Unit (SiL).
If β = 0, it becomes the scaled linear function f(x) = x

2
.

If β →∞, the sigmoid component approaches a 0-1 function and swish turns to the
ReLU function.
It shows that Swish can be loosely viewed as a smooth function which non-linearly
interpolates between the linear function and the ReLU function. The degree of in-
terpolation can be controlled by the model if β is set as a trainable parameter.
Swish is used in the EfficientNet models and shows great stability than ReLU6 espe-
cially for large EfficientNet model B6 and B7.

2.1.9 EfficientNet

The relationship between model size, accuracy and efficiency has been a research
topic for a long time. Scaling up the depth and the width of model are most com-
mon methods to achieve an optimal accuracy and efficiency. Image resolution is

11

Figure 2.11: Swish activation function (Ramachandran et al., 2017).

gradually accepted as an another important factor that affect the performance. Effi-
cientNet (Tan and Le, 2019) aims to achieve a better performance by systematically
scaling the models in depth, width and resolution, see Figure 2.12.
Scaling up width tend to obtain more fine-grained features and easier to train. How-
ever, the accuracy is much faster to reach saturation with a wider network. Depth
scaling is restricted by the vanishing gradient problem and diminishing accuracy
with a deep neural network. In high resolution image, it could potentially capture
features in detail, but it also could lead to a decline in the accuracy at the same time.
Therefore, a principled method is proposed to uniformly scale all dimensions with a
compound coefficients.

Figure 2.12: Model scaling (Tan and Le, 2019).

A compound coefficient controls how many resources available for the model. It
is directly associated to a regular efficiency measurement Floating Point Operations

12

(FLOPS). FLOPS is almost proportional to the product of depth, the square of width
and the square of resolution. By using the fixed FLOPS, assign the resources to the
depth, width and resolution individually using the coefficients.
A baseline ConvNet EfficientNet-B0 is developed by performing MnasNet while EfficientNet-
B1 to B7 are obtained by scaling up the baseline ConvNet. The main building block
in the baseline network is named as mobile inverted bottleneck MBCov. It is mainly
composed by Inverted Residual block with squeeze-and-excitation layer.
The performance of the EfficientNet Architecture is measured by accuracy and effi-
ciency. In the high-accuracy area, it surpass the state of art on ImageNet and other
five common transfer learning databases. For instances, EfficientNet-B7 reaches
state-of-the-art 84.4% top-1 and 97.1% top-5 accuracy on ImageNet. For the effi-
ciency, with an order of magnitude fewer parameters and FLOPS, EfficientNEt-B7 is
8.4x smaller and 6.1x faster on CPU inference than the previous Gpipe (Tan and Le,
2019).

2.2 Image Augment

Image augment is effective way to improve the image accuracy and keeps the ro-
bustness of models. At the same time, augment can randomly increases the amount
and diversity of the data. This section introduces the most popular image Augment
methods and some other techniques.

2.2.1 AutoAugment

Instead of manually searching for the best augmentation method, Cubuk et al. (Cubuk,
Zoph, Mane, Vasudevan and Le, 2019) proposed an automatic way to get the optimal
augmentation policy for the dataset of interest. Unlike other generators, AutoAugu-
ment does not directly generate augmented images. Instead, it generates symbolic
transformation operations.
Using RNN Controller like NasNet, AutoAugument also needs a child network to
train on the small dataset and transfer the optimal policy to a large dataset. In the
searching space, a policy is composed of five sub-policies, which includes two image
transformation operations to be applied in sequence, see Figure 2.13. Each opera-
tion is associated with two numerical values, magnitude and probability. Magnitude
determines how strong the transform applies, and probability decides the occurrence
of the operation. The images in the mini-batch randomly select one sub policy for
the batch and generate the transformed images for training. In total, there are 16
operations and 10 uniformed magnitudes, 11 probabilities assigned to each opera-
tion, see Figure 2.14.

As the paper(Tan and Le, 2019) describes, they have applied fixed AutoAugment
policy to training EfficientNets on ImageNet, which implies the pretrained Efficient-
Nets is build on the AutoAugment policy. EfficientNet with AutoAugment shows
an improvement in the accuracy and raises the robustness of the original model.

13

Figure 2.13: RNN controller for AutoAugment(Cubuk, Zoph, Mane, Vasudevan and
Le, 2019).

(Rwightman, 2020a)

Figure 2.14: AutoAugment policy (2 operations with probability and magnitude un-
der each sub-policy) (Cubuk, Zoph, Mane, Vasudevan and Le, 2019).

2.2.2 RandAugment

A separate search phase in AutoAugument that searching on a small dataset and
transferring to large dataset could only produce the sub-optimal policy. Apart from
the optimal issue, the search space of AutoAugument is enormous. Cubuk et al.
(Cubuk, Zoph, Shlens and Le, 2019) creates a new method called RandAugment,
which dramatically reduces the search space without the need for a separate proxy
task.
There are only two interpretable hyperparameters, the magnitude value and the
number of transformations applies sequentially. Each transformation is selected with
a uniform probability.

14

The paper (Cubuk, Zoph, Shlens and Le, 2019) shows that average performance in-
creases when more transformations are included. Some transformations make great
contributions to accuracy like rotation while other operations reduce to the overall
performance like posterizing. It also proves the assumption that optimal magnitude
value depends on the size of both network and training datasets, and the magnitude
value for different operations is not essential. Hence, the search space can be de-
creased.
RandAugment simply uses a grid search for optimal magnitude value, including
the small search for the number of transforms. It provides a similar accuracy with
AutoAugment but with a less computational cost. EfficientNet with RandAugment
achieves remarkable results, especially for the small models.

2.2.3 Adversarial Propagation

Training adversarial images is a creative approach to increase the robustness of a
model, and force the model less sensitive to texture distortions and focus more on
shape information. However, too many noises lead to a decline in the accuracy.
Adversarial Propagation (Xie, Tan, Gong, Wang, Yuille and Le, 2019) use an auxiliary
batch normalization, see Fig.2.15, to disentangle the mixed distributions between
clean and adversarial images. It tries to keep the detachable feature maps into sep-
arate domains so that the features are still distinctive in the next layer. These two
separate BNs solves the distribution mismatch of two datasets and guarantee the
network extracts valuable features from both domains accurately and effectively.
Some other datasets that are hard to recognize are derived from ImageNet, like
ImageNet-A, ImageNet-C. They are used to challenge the model from different as-
pects. Adversarial Propagation achieves extraordinary performance when it is used
in EfficientNet architectures and combined with RandAugment(Rwightman, 2020a).

2.2.4 Self training with noise student

Self-training with noise student method with the EfficientNet achieves state of the
art when training on the ImageNet.
The concept is composed of four steps.(Figure 2.16) First, train a teacher model on
the labelled images like EfficientNet-B7. Then use the teacher model to generate
pseudo labels on unlabeled images. Next, train an equal or larger student model on
the combination of labelled images and pseudo labelled images with some injected
input and model noises. Finally, the student model converts to a teacher model
and produce new pseudo labels again. The paper also emphasizes the importance
of injecting the noise into student model like RandAugument as input noise and
dropout and stochastic depth as model noise.

This experiments uses pretrained Efficientnet-B7 as the teacher, training student
model a derived EfficientNet-L2, which is much wider and deeper than B7 on unla-
belled images. Then, this L2 is used as teacher and training a new L2 as student on
the same unlabelled images but larger batch size again.

15

Figure 2.15: Auxiliary batch normalization (Xie, Tan, Gong, Wang, Yuille and Le,
2019).

Figure 2.16: Self training with noise student(Xie, Hovy, Luong and Le, 2019).

Apart from the iterative training on L2, the paper (Xie, Hovy, Luong and Le, 2019)
also proposes a study which use the same model as both teacher and student. It also
leads to a consistent improvement of around 0.8% for all model sizes.
EfficientNets with Noisy Student provide a much better trade-off between model size
and accuracy than pure EfficientNets.

16

Chapter 3

Implementation

3.1 Efficientnet implementation

EfficientNet-B0 is an another searched result from the MNasNet, which targets both
accuracy and FLOPS (Float point operations per seconds, a measure for computer
performance) rather than accuracy and real-world latency. The search space for
Efficientnet-B0 is the same with what used in the MNasNet, which consists of Convo-
lution Operations, Kernel size, Squeeze-and-excitation ratio, Skip Operations, num-
ber of filters and number of layers per block. The optimization goal is to maximize
the Accuracy(m) × [FLOPS(m)/T]w, where T is target FLOPS and w is the hyper-
parameter to control the trade-off. EfficientNet is slightly bigger than MNasNet that
results in larger target FLOPS as well.

Figure 3.1: B0 Baseline

The Fig. 3.1 shows the basic structure of EfficientNets. Stem stage has a regular 3x3
Conv, and head stage contains a 1x1 Conv for increasing dimension, pooling and a
fully connected layer for classification. The feature extraction stages in the middle
are composed by multiple mobile inverted bottleneck (MBConv Block) with a SE
(Squeeze-and-Excitation) layer inside. MBConv block is used to extract the informa-
tion of features on higher dimension and reduce back to origin channels eventually.

17

It contains four phases, Expansion phase, Depthwise phase, SE phase and reduction
phase. Based on the expand ratio, the Expansion phase uses 1x1 kernel to increase
dimension first and information are extracted in multiple channels by corresponding
kernel size in Depthwise phase. Then, SE phase is implemented to assign weights
to different channels by adaptively pooling the feature size to 1. Finally, pointwise
convolution works to reduces the number of output channel. In addition, Batch Nor-
malization and swish activation are appended to each convolutional layer and skip
connection is placed for the block.

Once the baseline model is completed, compound scaling method plays an impor-
tant role for the next scaling. Compound scaling method grid search three best
coefficients: width (α), depth (β) and resolution (γ), as well as another compound
coefficient (φ) to hold the number of FLOPS within the predefined constraints. The
scaling in EfficientNets from three aspects width(w), depth(d) and resolution(r),
where width coefficient multiples with input channel and output channel of every
stage (except stem stage) and depth coefficient implements with the number of re-
peated layers to increase the depth of the model in feature extraction. For the reso-
lution coefficient, it needs to pre-process before feeding the image into the network.

Depth : d = αφ (3.1)

Width : w = βφ (3.2)

Resolution : r = γφ (3.3)
s.t.α× β2 × γ2 ≈ 2 (3.4)

α ≥ 1, β ≥ 1, γ ≥ 1 (3.5)

Compound scaling :(α× β2 × γ2)φ ≈ 2φ (3.6)

Based on the equations above, FLOPS of a regular convolution op is proportional to
d, w2, r2. Simply double the depth of model could double the FLOPS while double
the width or resolution increases the FLOPS by four times. Hence, α × β2 × γ2 is
constrained by 2.

3.2 EfficientNet on Cifar10 and Cifar100

EfficientNets achieve outstanding performance on the transfer learning, which is pre-
trained on the ImageNet dataset and fine-tuning on other small dataset like Cifar10
and Cifar100. However, due to lack of ImageNet dataset, directly training Efficient-
Net on Cifar data and use the pretrained Efficienents to fine tuning on Cifar data are
feasible.

Techniques that work well for other networks, do not always result in a good ac-
curacy using EfficientNet (Rwightman, 2020b). Based on my experiments, the con-
figuration of training EfficientNet on ImageNet is not suitable for other datasets
when doing transfer learning. It does not get a reasonable results within the lim-
ited epochs, therefore I train these models using the general configuration on Cifar

18

dataset.
The configuration for training Cifar data can find in Appendix section.

3.3 EfficientNets for Diabetic Retinopathy Dataset

Data exploration
Diabetic Retinopathy dataset has five levels, No DR, Mild, Moderate, Severe and
Proliferative DR. In total, it contains about 88K samples from both left and right eye
of 44K patients. However, the dataset is imbalanced, which is the biggest challenge
to solve. Majority of the samples are No DR (74%) and other four categories are also
not in the same amounts (14%, 7%, 2% and 2% respectively). These retina images
come from the different models and types of cameras, and appearance of both left
and right eye. In addition, like any other real world data, noise and variation are
inevitable in this dataset. Therefore, a major aim of this project is to develop robust
algorithms that can handle these two situations.
The training samples contains 35K, and there are 42k and 11K samples for the public
and private test. These sample images are not in the uniform high resolution which
needs to resize before feeding into network model. Here are some samples extracting
from original images, see Fig. 3.2.

Figure 3.2: Diabetic Retinopathy images (4 pair of eyes).

These images shares similar shape and color, especially the left and right eyes from
the same person.

As the Fig. 3.3 shown, there are some samples for original images and its RandAug-
ment (with color injection) images. This RandAugment gives the weight for each
augment operations. These weights forces the augment policy to focus more on the
shape transformation like shear, translate instead of color changes.

Balanced Sampling
A problem occurs in the image sampling for both training and testing sets. The ra-
tio between each classes in training, public test and private test are similar, which
means in three classes sets, No DR is always slight over 70% while both severe and
proliferate DR are about 2%. A prediction made by a model should not rely on the
imbalance of the dataset. Therefore, the training set needs to resample and a bal-
ancedSampling is inevitable.
According to the class weight (0.272, 2.875, 1.327, 8.047, 9.922), generate a new dataframe
to store new samples. Directly copying the entire class images N times where N is

19

(a) Original (b) RandAugment

Figure 3.3: Original Images (Left) and RandAugument images (Right).

integer multiples, and for the decimal part, samples the class images with replace-
ment. Additionally, 5 multipliers can given to each class weight to control the ratio
of each class. Hence, each class is weighted sampled before feeding into RandAug-
ment.
Pretrained EfficientNet models are comes from the resources (Rwightman, 2020a).

20

Chapter 4

Experimental Results

4.1 Cifar10 and Cifar 100

The experiment results for training the EfficientNets from the scratch and transfer
Learning on Cifar10 are shown in the Table 4.1.

Model Batch size Learning from scratch Transfer Learning Results
EfficientNet-B0 32 0.8593 0.9673 0.981
EfficientNet-B3 32 0.8863 0.9769 —
EfficientNet-B5 8 0.8662 0.9754 —

Table 4.1: Cifar10 Performance

The best results comes from the paper (Tan and Le, 2019), which is the outcome of
transfer learning from ImageNet and achieves 98.1% performance. Transfer Learning
with the same pretrained Efficientnet-B0 gets 96.73%. There is a 1.37% gap between
this transfer learning and best results on Efficienet-B0.
For different EfficientNet models, they share the same training configuration in each
type of training except batch size, which can be found in the Appendix Section. The
training accuracy for B0 and B3 has the improvement with the model size increased
while B5 drops the performance due to the batch size.

The experiment results for training the EfficientNets from the scratch and transfer
Learning on Cifar100 are shown in the Table 4.2.

Model Batch size Learning from scratch Transfer Learning Results
EfficientNet-B0 32 0.5704 0.8446 0.8810
EfficientNet-B3 32 0.6146 0.8651 —
EfficientNet-B5 8 0.5294 0.8595 —

Table 4.2: Cifar100 Performance

Same with Cifar10, Cifar100 has about 3.64% error between transfer learning and
best outcome from the paper (Tan and Le, 2019) in EfficientNet-B0. Both B0 and B3

21

have improvement on Cifar10 and Cifar100 while Efficientnet B5 doesn’t reach an
ideal performance. This is mainly because the batch size.
Due to the limitation of the memory, B0 and B3 have batch size 32 while B5 only
uses 8. Other training hyperparameters are the same. The batch size significantly
affects the accuracy of model B5, which should exceed B3 if the same batch size is
given. Moreover, although the paper (Tan and Le, 2019) doesn’t specify their batch
size for training Cifar10 and Cifar100 datasets, it gives the batch size 4096 for train-
ing on ImageNet.
A Finding for this experiment: large batch size is necessary for EfficientNet. The
batch size heavily impacts the accuracy of learning from the scratch than transfer
learning.
Therefore, the batch size significantly affects the accuracy for DR dataset as well,
which should have a slight improvement if a large batch size id given.

4.2 EfficientNets for Diabetic Retinopathy Dataset

Without BalancedSampler and RandAugment
For the experiment without BalancedSampler and RandAugment, the performance
are shown in the Table 4.3.

Model parameters Public test Private test
Kaggle — 0.8603 0.8496
ResNeXt-50 32x4d 25M 0.8498 0.8404
ResNeXt-101 32x8d 88M 0.8609 0.8519
EfficientNet-B5 30M 0.8562 0.8452
EfficientNet-B5-ap 30M 0.8538 0.8455
EfficientNet-B5-ns 30M 0.8708 0.8581

Table 4.3: DR Performance

There are two kinds of testing outcomes for different models. Public test is used for
validation and private test is the holdout set. In the above table, A competition from
Kaggle (Diabetic Retinopathy Detection, 2015) displays their best performance for this
challenge but it doesn’t declare the type and size of model. ResNeXt is the previous
best model for this dataset collected from (Alansary, 2020). For the ResNeXt-50,
although it just has about 25M parameters, it reaches 84.98% and 84.04% for the
public and private sets.
Compare with ResNeXt-50, ResNeXt-101 has 1.11% and 1.15% improvement in the
public and private datasets. However, the size of ResNeXt-101 is more than three
times larger than ResNeXt-50.

There are three type of pretrained EfficientNet-B5 models are used in the exper-
iment. EfficientNet B5, EfficientNet with adversarial propagation (EfficientNet-B5
with ap) and EfficeinetnNet-B5 with noise student (EfficientNet-B5 with ns). With

22

(a) ResNeXt-50 (b) EfficientNet B5

Figure 4.1: ResNeXt-50 and EfficientNet B5 public test confusion matrix.

regard to overall accuracy, they all show great performance in comparison to ResNeXt-
50. They are all have the same model size and close to the size of ResNeXt-50.

In addition to overall accuracy, it is inevitable to use confusion matrix to check the
distribution of each class. The robustness of the model can be reflected from the con-
fusion matrix. Compared with confusion matrix of ResNeXt-50 and EfficientNet-B5,
see Fig. 4.1, EfficientNet-B5 has advantage in all five classes about precision and has
better prediction in three of them regarding sensitivity. The worst case is sensitivity
of Mild DR, where EfficientNet-B5 is far away from ResNeXt-50.

For EfficientNet-B5-ns, it achieves the 87.08% and 85.81% as the best performance of
all models. The confusion matrix shows that the private test results works well in all
classes except Mild DR in comparison to ResNeXt-101 private test results, see Fig.
4.2.

ROC, precision and recall curve
In the Fig. 4.3, ROC curve shows the situation of all five classes. A ROC curve for
a class expresses the capability of a model distinguishes a class with others based
on the overall accuracy. Class 1 (Mild DR) performaces much worse than other 4
classes. Therefore, the model is not able to distinguish Mild DR with other labels
precisely.
For imbalanced multi-classes dataset, precision and recall curve represents more
accurate than ROC curve because both precision and recall determinate the per-
formance of multi-classes dataset instead of overall accuracy only. The Fig. 4.3
illustrates the same problem that class 1 (Mild DR) is not learned very well.

23

(a) ResNeXt-101 (b) EfficientNet-B5-ns

Figure 4.2: ResNeXt-101 and EfficientNet-B5-ns private test confusion matrix.

(a) ROC (b) precision and recall

Figure 4.3: ROC (a), precision and recall curve (b) for EfficientNet-B5-ns private
test.

With BalancedSampler and RandAugment
For the experiment with BalancedSampler and RandAugment, the performance are

24

shown in the Table 4.4.

Model Public test Private test
EfficientNet-B5 0.7949 0.7847
EfficientNet-B5 with ap 0.8175 0.8057
EfficientNet-B5 with ns 0.8284 0.8160

Table 4.4: EfficientNet-B5 with RandAugment and BalancedSampler Performance.

The performance of EfficientNet-B5 with RandAugment and BalancedSampler is not
as good as without using RandAugment and BalancedSampler, see Fig 4.4.

Figure 4.4: EfficientNet-B5 with NS confusion matrix

In conclusion, EfficientNet-B5-ns achieves a better performance than ResNeXt-101 in
four of five classes, and the overall accuracy is the best. However, the RandAugment
doesn’t performs well with BalancedSampler.

4.3 EfficientNets for other Diabetic Retinopathy Dataset

APTOS (Asia Pacific Tele-Ophthalmology Society) (APTOS 2019 Blindness Detection,
2019) is a dataset for detecting diabetic retinopathy with the same five labels. The
following Table 4.5 is the performance directly measured by the EfficientNet-B5
models. The training datasets is much smaller, which contains only 3662 samples.
This performance is achieved directly testing on the APTOS training set. Same with
DR dataset, APTOS training set is also imbalanced, which has No DR (49.29%),

25

Mild DR (10.10%), Moderate DR (27.28%) Severe DR (5.27%) and Poliferative DR
(8.06%). Therefore, this small dataset can be used to better represent the perfor-
mance of our model in real world.

Model performance
EfficientNet-B5 0.7073
EfficientNet-B5-ap 0.7261
EfficientNet-B5-ns 0.7425

Table 4.5: EfficientNet B5 Performance in APTOS dataset

Although the overall performance of EfficientNet B5 models are not ideal, the con-
fusion matrix from Fig. 4.5 shows where the problem is. For EfficientNet-B5-ns,
majority of Mild DR are misclassified as Moderate DR. The sensitivity of detecting
Mild DR for this model is only 0.01%, which is not reasonable. For other four classes,
they reach the similar sensitivity with Fig. 4.2.

Figure 4.5: EfficientNet-B5 with NS confusion matrix for Aptos.

Consequently, there is no standard criterion to measure Mild and Moderate DR. The
labels for Mild and Moderate DR could contains a large number of noises. The gold
truth for Mild and Moderate DR is not reliable and need to rectify or re-label·.

26

Chapter 5

Conclusion

EfficientNets provides a systematic way to scaling a model in both accuracy and effi-
ciency. Compound scaling method can be applied to many other models to make full
use of the limited resource. EfficientNets can provide the different levels of models
to fit different datasets. It also performs well when applying transfer learning to
small datasets. Many other techiques can be used with EfficientNets like RandAug-
ment, Adversarial Propagation and self training with noise student. These methods
generate a pipeline to serve EfficientNets family and enhance capability of Efficient-
Net.
In this project, many EfficientNet models are used to classify the retinal images.
EfficientNet-B5-ns achieves the best performance, which has 87.07% for public test
and 85.81% for private test. Some techniques like RandAugment are used in order
to improve the performance and handle the imbalance of dataset.

Future work

1. Compound Scaling method can be applied to other models like ResNeXt-50 to
check if these scaled models perform better in the DR dataset.

2. Give a larger batch size for EfficientNet-B5 and try some larger models like B6
and B7.

3. Re-considering about the label of Mild DR classes and try to use unlabeled data
to improve performance like self training with noise student.

27

Bibliography

Alansary, A. (2020), ‘Dr-detection’.
URL: https://github.com/amiralansary/DR-Detection pages 2, 22

APTOS 2019 Blindness Detection (2019).
URL: https://www.kaggle.com/c/aptos2019-blindness-detection/overview pages 25

Cifar (2020).
URL: http://www.cs.toronto.edu/ kriz/cifar.html pages 1

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V. and Le, Q. V. (2019), Autoaug-
ment: Learning augmentation strategies from data, in ‘Proceedings of the IEEE
conference on computer vision and pattern recognition’, pp. 113–123. pages 13,
14

Cubuk, E. D., Zoph, B., Shlens, J. and Le, Q. V. (2019), ‘Randaugment: Practi-
cal automated data augmentation with a reduced search space’, arXiv preprint
arXiv:1909.13719 . pages 1, 14, 15

Diabetes.co.uk (2019), ‘Diabetic retinopathy’.
URL: https://www.diabetes.co.uk/diabetes-complications/diabetic-retinopathy.html
pages 2

Diabetic Retinopathy Detection (2015).
URL: https://www.kaggle.com/c/diabetic-retinopathy-detection pages 2, 22

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image
recognition, in ‘Proceedings of the IEEE conference on computer vision and pattern
recognition’, pp. 770–778. pages 1, 4, 5

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M. and Adam, H. (2017), ‘Mobilenets: Efficient convolutional neural net-
works for mobile vision applications’, arXiv preprint arXiv:1704.04861 . pages 1,
4

Hu, J., Shen, L. and Sun, G. (2018), Squeeze-and-excitation networks, in ‘Proceed-
ings of the IEEE conference on computer vision and pattern recognition’, pp. 7132–
7141. pages 6, 7

ImageNet (2020).
URL: http://www.image-net.org/ pages 1

28

Ramachandran, P., Zoph, B. and Le, Q. V. (2017), ‘Searching for activation func-
tions’, arXiv preprint arXiv:1710.05941 . pages 1, 10, 12

Rwightman (2020a), ‘rwightman/pytorch-image-models’.
URL: https://github.com/rwightman/pytorch-image-models pages 14, 15, 20

Rwightman (2020b), ‘rwightman/pytorch-image-models’.
URL: https://github.com/rwightman/pytorch-image-models/issues/11 pages 18

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. (2018), Mo-
bilenetv2: Inverted residuals and linear bottlenecks, in ‘Proceedings of the IEEE
conference on computer vision and pattern recognition’, pp. 4510–4520. pages 5,
10

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A. and Le, Q. V.
(2019), Mnasnet: Platform-aware neural architecture search for mobile, in ‘Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition’,
pp. 2820–2828. pages 9, 10, 11

Tan, M. and Le, Q. V. (2019), ‘Efficientnet: Rethinking model scaling for convolu-
tional neural networks’, arXiv preprint arXiv:1905.11946 . pages 1, 2, 12, 13, 21,
22, 30

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. and Le, Q. V. (2019), ‘Adversarial
examples improve image recognition’, arXiv preprint arXiv:1911.09665 . pages
15, 16

Xie, Q., Hovy, E., Luong, M.-T. and Le, Q. V. (2019), ‘Self-training with noisy student
improves imagenet classification’, arXiv preprint arXiv:1911.04252 . pages 16

Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K. (2017), Aggregated residual trans-
formations for deep neural networks, in ‘Proceedings of the IEEE conference on
computer vision and pattern recognition’, pp. 1492–1500. pages 5, 6

Zoph, B., Vasudevan, V., Shlens, J. and Le, Q. V. (2018), Learning transferable archi-
tectures for scalable image recognition, in ‘Proceedings of the IEEE conference on
computer vision and pattern recognition’, pp. 8697–8710. pages 1, 7, 8, 9

29

Appendix

5.1 Training configuration

ImageNet
Training process for efficientnet on ImageNet closes to the MNasNet, which uses
RMSProp optimizer with 0.9 momentum, Batch Normalization 0.99 with weight
decay 1e-5, initial learning rate 0.256 that decays by 0.97 every 2.4 epochs and
linearly increased dropout from B0 to B7. Additionaly, fixed AutoAugment policy
and stochastic depth are also used to perform regularization. MNasNet use batch
size 4K and doesn’t specify the number of epoch.(Tan and Le, 2019)
Cifar10 and Cifar100
Training Efficientnet B0 from scratch
Batch size 32, Adam optimizer with weight decay 1e-5, learning rate 0.001, Reduce
Learning scheduler factored a half by 2 patience, 40 epochs.

For pretrained Efficientnet B0
Batch size 32, SGD optimizer with weight decay 1e-5, learning rate 0.001, momen-
tum 0.99, Reduce Learning scheduler factored a half by 1 patience, 40 epochs.
Image normalization for Cifar10 mean:(0.4914, 0.4822, 0.4465) and std: (0.247,
0.243, 0.261)
Image normalization for Cifar100 mean:(0.5071, 0.4867, 0.4408) and std: (0.2675,
0.2565, 0.2761)

EfficientNet-B5-ns
Fine tuning
Batch size 8, Adam optimizer with weight decay 1e-5, learning rate 0.0001, Step
learning scheduler with step size 0.5 for every 2 epochs. 40 epochs.
Image normalization for DR dataset mean: (0.42, 0.22, 0.075), std: (0.27, 0.15,
0.081).

5.2 EfficientNet

Code for EfficientNets on Cifar: https://github.com/Rain9876/EfficientNet2D
Code for DR-Detection: https://github.com/amiralansary/DR-Detection

30

https://github.com/Rain9876/EfficientNet2D
https://github.com/amiralansary/DR-Detection

	1 Introduction
	1.1 Objectives and Challenges
	1.2 Contribution

	2 Background
	2.1 Models
	2.1.1 Residual Neural Network (ResNet)
	2.1.2 MobileNetV1
	2.1.3 MobileNetV2
	2.1.4 ResNeXt
	2.1.5 Squeeze and Excitation layer
	2.1.6 Neural Architecture Search Network (NasNet)
	2.1.7 Platform-Aware Neural Architecture Search for Mobile (MNasNet)
	2.1.8 Swish
	2.1.9 EfficientNet

	2.2 Image Augment
	2.2.1 AutoAugment
	2.2.2 RandAugment
	2.2.3 Adversarial Propagation
	2.2.4 Self training with noise student

	3 Implementation
	3.1 Efficientnet implementation
	3.2 EfficientNet on Cifar10 and Cifar100
	3.3 EfficientNets for Diabetic Retinopathy Dataset

	4 Experimental Results
	4.1 Cifar10 and Cifar 100
	4.2 EfficientNets for Diabetic Retinopathy Dataset
	4.3 EfficientNets for other Diabetic Retinopathy Dataset

	5 Conclusion
	5.1 Training configuration
	5.2 EfficientNet

